Calorimeter Electronics

E.J. Mannel sPHENIX Collaboration Meeting 11-Dec-2015

Design Drivers-I

- Compact Electronics- limited space on detector
- Common Electronics Design
 - Reduce design cost and time
 - Use off the shelf component, no custom ASICs
- Optical Sensors
 - Immune to magnetic fields
 - Compact
 - High gain
- Direct digitization of signals
 - 40 BCO latency for trigger
 - Multi-event buffering
 - Reduced demands on analog section
- Compatible with PHENIX DAQ
 - High rate: 15kHz L1 trigger rate

Design Specifications

Optical Sensors:

- Dynamic Range: 10⁴
- Gain: 10⁵
- Photon Detection Efficiency: 25%

Analog Front End:

- Signal-to-Noise: 10:1
- Peaking time: 30 nSec
- Gain: 100 mV/pC

• Digitizer:

- Resolution 14 bits (12 bit effective)
- Maximum sampling frequency: 65 MHz
- Latency (L1 Trigger): 40 Beam Crossings (BCO)
- Multi-event buffering: 4 Events
- L1 Trigger rate: 15 KHz

Calorimeter Electronics: Optical Sensors

- Solid state optical sensors
 - SiPMs are the preferred sensor
 - Reference design based on Hamamatsu \$12572-015P
 - 3x3 mm²
 - 15 μm pixel size, 40K pixels
 - Gain: 2x10⁵
 - EMCal: 98304, HCal: 15360

Optical Sensors: Temperature Effects

- SiPMs have strong temperature dependence : 2%-4%/°C
- Local monitoring of temperature
- Feed back loop to correct for temperature

SiPM Neutron Radiation Damage

- SiPM susceptible to damage due to neutron radiation
- Results in increased leakage current
 - Increased noise
 - Decrease in PDE
 - Increased power
- Studies on neutron damage in progress

SiPM Radiation Studies

- PHENIX IR: Run 14/15
 - Neutron fluxes similar to what is expected for sPHENIX 2-3 x 10¹⁰ n/cm² per Run
 - Measure change in leakage current
 - Measure gain using LEDs
- LANCE (Los Alamos) and LENS (Indiana University) Studies
 - Much higher fluences-Equivalent to multi-years of running in a few days 10¹¹ – 10¹³ n/cm²
 - Study device characteristics pre/post irradiation
- STAR is also doing studies

Calorimeter Electronics: Analog Electronics

- Common front end analog electronics
 - Analog electronics located on detector.
 - Local thermistor for temperature monitoring: Trim SiPM bias
 +/- 2.5V
 - Charge injector signal test: Test Pulse
 - Differential multiple-feedback Shaper/Driver 30nSec peaking time matched to a 60 MHz sampling rate.
 - S/N approximately 1 μcell (pixel)
 - Low power: $P_{tot} \sim 300 \text{ mW}$

Slow Controls

- Monitor temperature and currents
- Compensate for temperature and variations in leakage current

12/11/15

10

Front End Prototypes

HCal Controller

EMCal SiPM Holder

EMCal 1x8 Preamplifier Board

Calorimeter Electronics: Digital

- Located off (but near) detector
 - Reduced space constraints
 - Reduced cooling complexity
 - Easier access for installation and maintenance
 - Reduced magnetic constraints: e.g. allows use of DC-DC converters, inductors.
 - Need to pay attention to noise issues
- Continuous digitization of signals
 - 6x Beam crossing (BCO) frequency
 - 14 Bit ADC
 - Digital 40 BCO latency for L1 Trigger
 - Multi-event buffering
 - Provides trigger primitives

Digitizer System

- Based on PHENIX HBD design
- 14 Bit ADC @ ~60 MHz
- 64 channels per board
- Trigger Primitives based on 2x2 tower geometry
- First R&D prototypes are in fab with testing fall of 2015
- Should be available for 2016 beam test

sPHENIX Digitizer System

Digitzers are a Reality

Backplane

Calibration and Monitoring

- Preamplifiers have built in charge injection.
 - System testing and monitoring
 - Electronics calibration
- LED Pulsar system system built into preamp boards
 - Pulsed through slow control system
 - Illumination of light guides
 - Experience in PHENIX: MPC, ZDC...
- Gain compensation by controlling SiPM overvoltage (Temperature stabilization circuit)
- Ultimate calibration offline using π⁰ peak PHENIX EMCal

LED signal observed in EMCal test beam prototype Using HBD readout electronics

Opportunities for Contributions: Calorimeter Electronics

SiPM Characterization:

- Temperature effects
- Radiation damage
- Neutron fluence

Calibration/Monitoring:

- EMCal: LEDs + ???

Hcal: LEDs + Cosmics

Electronics: Gain, Temperature, Currents....

Electronics prototyping:

- Lab testing and characterization
- Beam tests

Opportunities for Contributions: Calorimeter Electronics...

Production Work

- Final Design
- Production oversight
- Quality assurance
- Installation and final check out

EMCal/HCal Trigger

- Design of trigger algorithm
- Development and testing of Trigger components

Cooling:

- EMCal and HCal have similar but different constraints
- Coupled with monitoring and gain stabilization

Summary

- We have a concept for the EMCal and HCal electronics:
 - Same optical sensor, almost the same analog front end
 - Direct digitization of SiPM signals
 - Provides trigger primitives based on tower sums
- First generation prototypes show that the concept is feasible
 - Continue studies on the SiPMs: radiation, temperature, stability
 - Still lot's of work to be done to test and characterize the prototypes
 - Test Beam on the horizon- April 2016
- There is still a lot of work to be done to prepare for CD1 & CD2/3
 - Flesh out the remaining pieces of the design
 - Work out production, Q/A and installation plans
 - Design a robust calibration and monitoring plan
- Bi-Weekly meetings, next is Wednesday Dec 16 @ 1330 EST https://indico.bnl.gov/categoryDisplay.py?categld=84

 https://lists.bnl.gov/mailman/listinfo/sphenix-electronics-l

